ОБРАЗЫ И СЛОВА В МАТЕМАТИКЕ Мы мыслим образами, образы не обязательно зрительные. Образ, это идеальное отражение мира в нашем сознании, изменённое сознание не рассматриваем. Что есть наш мир? Это объекты и взаимодействия между объектами. Математика начиналась с аналогий между числами и объектами мира. Взаимодействие между объектами и взаимодействия между числами не отличались друг от друга, (сложить, отнять). По мере развития математики, она всё более становится абстрактной, связь между математикой и миром уже приходится доказывать, объяснять. И как апофеоз абстракции, математики начали размышлять словами. Математики размышляют словами, отсюда противоречия, непонимание, разночтения и тому подобное. Отсюда формальная математика. Слово в любом языке, всего лишь обозначение объекта по некоторым признакам и обозначение взаимодействия. Когда просматривалась аналогия с объектами мира и математикой, больших проблем не возникало. Но когда математика абстрагировалась настолько, что сначала вводят новое понятие (слово, или слова) например – множество, а потом тщатся это новое понятие объяснить словами же, наступает коллапс. Не углубляясь, рассмотрим такие понятия, как ноль и бесконечность. В мире нет объектов аналогичных бесконечности или нулю, тем не менее, в математике они существуют, внося сумятицу при бездумном использовании. Но это ещё полбеды, в теории множеств произошла подмена, слово бесконечность (прошу заметить слово, а не образ) заменили на слово множество. И началась игра слов: будет ли множество всех множеств, не являющихся своими элементами, своим элементом? Переведём: будет ли бесконечность, всех бесконечностей, не являющихся своими элементами, своим элементом? Слова, слова и слова, немного отступить от формальной математики, от бесконечности и сразу же появятся образы, объекты, решения, доказательства, истина, в конце концов. Я думаю в своей работе «Ложная бесконечность в математике» это показано и доказано на реальном примере.

ссылка на полную версию: http://depositfiles.com/files/pf4zjyzao
|